Kandungan Asam Palmitat Pada Bahan Baku dan Produk Hasil Sintesis Asam Lemak Analog Pada ASI: Literature Review

  • Titin Aryani Progam Studi Teknologi Laboratorium Medis, Universitas ‘Aisyiyah Yogyakarta
  • Dwi Ernawati Progam Studi Kebidanan, Universitas ‘Aisyiyah Yogyakarta
  • Henny Parida Hutapea Progam Studi Kimia Terapan, Politeknik Santo Paulus Surakarta
Keywords: asam palmitat, sintesis, asam lemak mirip ASI

Abstract

Tujuan dari penelitian ini adalah mengetahui kandungan asam palmitat pada bahan baku dan produk hasil sintesis asam lemak analog pada ASI atau Analogue Fatty Acid in Breast Milk (AFABM). Penelitian yang dilakukan adalah penelitian yang bersifat deskriptif dengan jenis penelitian kepustakaan. Metode penelusuran menggunakan kata kunci metode PICO (Population, Intervention Comparison, Outcome). Dibandingkan minyak nabati yang lain, stearin sawit merupakan bahan sintesis AFABM yang memiliki kandungan asam palmitat relatif tinggi. Kandungan asam palmitat teresterifikasi pada posisi sn-2 tertinggi pada bahan baku sintesis AFABM adalah stearin sawit, sedangkan pada produk hasil sintesis adalah pada bahan baku minyak kedelei diperkaya palmitat dan Stearidonic Acid (SDA).

References

Akoh, C.C. dan Yee, L.W. (2002). Structured Lipids. Dalam: Akoh,C.C. dan Min, D.B. Editor: Food Lipids. Chemistry, Nutrition and Biotechnology. Second edition, Revised Expanded. Marcel Dekker, New York, Basel. p 877- 908. APCC. 2009. Coconut Statistic Year Book. https://154.68.126.6/library/Food%20Science%20books/batch1/Food%20Lipids%20-%20Chemistry,%20Nutrition%20and%20Biotechnology%20Second%20Edition.pdf.
Berry, E.E., Woodward, R., Yeoh, C., Miller, G.J. dan Sanders, T.A.B. (2007). Effect of interesterification of palmitic acid-rich triacylgliserol on postpandrial lipid and factor VII response. Lipids 42: 315-323. https://aocs.onlinelibrary.wiley.com/doi/epdf/10.1007/s11745-007-3024-x. DOI 10.1007/s11745-007-3024-x.
Carlos A. Álvarez, Casimir C, Akoh. (2015). Enzymatic Synthesis of Infant Formula Fat Analog Enriched with Capric Acid. J Am Oil Chem Soc., 92:1003–1014. https://link.springer.com/article/10.1007/s11746-015-2662-z?shared-article-renderer.
Carnielli, V.P., Rossi, K., Badon, T., Gregori, B., Verlato, G., Arzali, A. dan Zacchello, F. (1995). Medium-chain triacylglycerols in formulas for preterm infants: effect on plasma lipids, circulating concentrations of medium-chain fatty acids, and essensial fatty acids. The American Journal of Clinical Nutrition 64(2): 152- 158. https://pubmed.ncbi.nlm.nih.gov/8694014/.DOI:10.1093/ajcn/64.2.152.
Cong Sun, Wei Wei, Hang Su, Xiaoqiang Zou, Xingguo Wang. (2018). Evaluation of sn-2 Fatty Acid Composition in Commercial Infant Formulas on the Chinese Market: A Comparative Study Based On Fat Source And Stage. Food Chemistry, 242:29–36. https://pubmed.ncbi.nlm.nih.gov/29037692/. DOI:10.1016/j.foodchem.2017.09.005.
Innis, S.M., Dyer, R. dan Nelson, C.M. (1994). Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 29(8): 541-545. https://pubmed.ncbi.nlm.nih.gov/7990660/. DOI:10.1007/BF02536625.
Ke Wu, Runying Gao, Fang Tian, Yingyi Mao, Bei Wang, Lili Zhou, et al. (2019). Fatty Acid Positional Distribution (Sn-2 Fatty Acids) and Phospholipid Composition In Chinese Breast Milk From Colostrum to Mature Stage. British Journal of Nutrition. 121, 65–73. https://pubmed.ncbi.nlm.nih.gov/30378505/. DOI: 10.1017/S0007114518002994.
Lien, E.L., Boyle, F.G., Yuhas, R., Tomarelli, R.M. dan Quinlan, P. (1997). The effect of triglyceride positional distribution on fatty acid absorption in rats. Journal of Pediatric Gastroenterology & Nutritions 25: 167-174. https://pubmed.ncbi.nlm.nih.gov/9252903/. DOI: 10.1097/00005176-199708000-00007.
Lopez-Lopez, A., Castellote-Bargallo, A.I., Campoy-Folgoso, C., Rivero-Urgel, M., Tormo-Carnice, R., Infante-Pina, D. dan Lopez-Sabater, M.C. (2001). The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Human Development 65: S83-S94. https://pubmed.ncbi.nlm.nih.gov/11755039/. DOI: 10.1016/s0378-3782(01)00210-9.
Maduko, C.O., Akoh, C.C. dan Park, Y.W. (2007). Enzymatic Interesterification of Tripalmitin With Vegetable Oil Blends For Formulation of Caprine Milk Infant Formula Analogs. Journal Dairy Sci. 90:594–601. https://www.sciencedirect.com/science/article/pii/S0022030207715424.DOI:10.3168/jds.S0022-0302(07)71542-4
Maduko, C.O., Park, Y.W. dan Akoh, C.C. (2008). Characterization and oxidative stability of structured lipid : infant milk fat analog. Journal of American Oil Chemists’ Society 85: 197-204. https://pubmed.ncbi.nlm.nih.gov/17235135/.DOI:10.3168/jds.S0022-302(07)71542-4
Mounika, C. dan Reddy, S.Y. (2012). Specialty fats enriched with behenic and medium chain fatty acids from palm stearin by lipase acidolysis. Journal of the American Oil Chemists’ Society (89)9: 1691-1697. https://link.springer.com/article/10.1007/s11746-012-2059-1.
Nielsen, N.S., Yang, T., Xu, X. dan Jacobsen, C. (2006). Production and oxidative stability of a human milk fat substitute produce from lard by enzyme technology in a pilot packed-bed reactor. Food Chemistry 94: 53-60. https://www.sciencedirect.com/science/article/abs/pii/S030881460400809X. DOI: 10.1016/j.foodchem.2004.10.049
Teichert S.A, Casimir C dan Akoh. (2011). Modifications of Stearidonic Acid Soybean Oil by Enzymatic Acidolysis for the Production of Human Milk Fat Analogues. Journal of Agricultural and Food Chemistry, 59, 13300−13310. https://pubmed.ncbi.nlm.nih.gov/22097918/. DOI: 10.1021/jf203718w.
Teichert, S.A and Casimir C. Akoh. (2011). Stearidonic Acid Soybean Oil Enriched with Palmitic Acid at the sn-2 Position by Enzymatic Interesterification for Use as Human Milk Fat Analogues. Journal of Agricultural and Food Chemistry, 59, 5692–5701. https://pubmed.ncbi.nlm.nih.gov/21517012/. DOI: 10.1021/jf200336t.
Teichert, S. A, Akoh, C. C. (2011). Characterization of Stearidonic Acid Soybean Oil Enriched With Palmitic Acid Produced by Solvent-Free Enzymatic Interesterification. J. Agric. Food Chem. 2011, 59, 9588−9595. https://pubmed.ncbi.nlm.nih.gov/21830790/. DOI: 10.1021/jf201992k.
Turan D., Neşe Şahin Yeşilçubuk, dan Casimir C., Akoh. (2012). Production of Human Milk Fat Analogue Containing Docosahexaenoic and Arachidonic Acids. J. Agric. Food Chem., 60, 4402−4407. https://pubmed.ncbi.nlm.nih.gov/22497589/. DOI: 10.1021/jf3012272.
Zou, X, Huang, J., Jin, Q., Liu, Y., Song, Z., Wang, X. (2012). Lipase-catalyzed synthesis of human milk fat substitutes from palm stearin in a continuous packed bed reactor. Journal of the American Oil Chemists’ Society. 89:1463-1472. https://link.springer.com/article/10.1007/s11746-012-2046-6. DOI: 10.1007/s11746-012-2046-6.
Published
2021-07-06
How to Cite
Aryani, T., Ernawati, D., & Hutapea, H. (2021). Kandungan Asam Palmitat Pada Bahan Baku dan Produk Hasil Sintesis Asam Lemak Analog Pada ASI: Literature Review. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 11(3), 507-514. https://doi.org/https://doi.org/10.32583/pskm.v11i3.1370
Section
Articles